Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó thuộc hai đường thẳng lần lượt có phương trình:
\(\Delta_1:\dfrac{x-1}{2}=\dfrac{y}{-1}=\dfrac{z+1}{3}\) và \(\Delta_2:\dfrac{x-3}{-1}=\dfrac{y+1}{1}=\dfrac{z}{1}\).
a) Hai con đường trên có vuông góc với nhau hay không?
b) Nút giao thông trên có phải là nút giao thông khác mức hay không?
a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {2; - 1;3} \right)\).
Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;1} \right)\).
Ta có: \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 2.\left( { - 1} \right) - 1.1 + 3.1 = 0\) nên \(\overrightarrow {{u_1}} \bot \overrightarrow {{u_2}} \). Do đó, hai con đường trên vuông góc với nhau.
b) Đường thẳng \({\Delta _1}\) đi qua điểm \(A\left( {1;0; - 1} \right)\), đường thẳng \({\Delta _2}\) đi qua điểm \(B\left( {3; - 1;0} \right)\)
Vì \(\frac{2}{{ - 1}} \ne \frac{{ - 1}}{1}\) nên \(\overrightarrow {{u_1}} \) không cùng phương với \(\overrightarrow {{u_2}} \)
Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&3\\1&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&2\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = \left( { - 4; - 5;1} \right) \ne \overrightarrow 0 \), \(\overrightarrow {AB} \left( {2; - 1;1} \right)\)
Vì \(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 4} \right).2 + \left( { - 5} \right).\left( { - 1} \right) + 1.1 = - 2 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.
Do đó, nút giao thông trên là nút giao thông khác mức.