\(\sqrt{x^4\left(x-1\right)^2}=\sqrt{\left(x^2\left(x-1\right)\right)^2}=x^2\left(1-x\right)=x^2-x^3\)
\(\sqrt{x^4\left(x-1\right)^2}=\sqrt{\left(x^2\left(x-1\right)\right)^2}=x^2\left(1-x\right)=x^2-x^3\)
\(\left(\dfrac{1}{x-4}-\dfrac{1}{x^2+4\sqrt{x}+4}\right)\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) Với x > 0 ; x # 4
Tìm x biết
1) \(\sqrt{x-1}=3\)
2) \(\sqrt{x}-\sqrt{3}=0\)
3) \(4-5\sqrt{x}=-1\)
4) \(\sqrt{x}\left(\sqrt{ }x-1\right)=0\)
5)\(\left(\sqrt{ }x-2\right)\left(\sqrt{ }x+3\right)=0\)
6) \(\left(\sqrt{ }x+1\right)\left(\sqrt{ }x+2\right)=0\)
7) \(^{^{ }}x2+2\sqrt{2x}+2=1\)
Rút gọn biểu thức sau: \(\left(\frac{x-\sqrt{x}}{x-1}-\frac{x}{x-2\sqrt{x}}\right)\left(1+\frac{1}{\sqrt{x}}\right)\) với x>0,x≠1,x≠4
Giải các phương trình:
1) \(\left|x^2-1\right|+\left|x+1\right|=0\)
2) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
3) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
4) \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
Bài 1: giải các PT sau
a) \(2\sqrt{x}=6\)
b) \(4-5\sqrt{x}=-1\)
c) \(4\sqrt{x}=-3\)
d) \(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
e) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=0\)
f) \(\left(\sqrt{x}+\sqrt{2}\right)\left(\sqrt{x}+3\right)=0\)
Bài 2:
\(9\left(x+2\right)^2-108=0\)
\(\dfrac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)\) (với \(x>1;x\ne2\))
Giải phương trình:
a) \(\sqrt{\left(x-2\right)^2}=\sqrt{x-2}\)
b) \(\sqrt{x^2-1}-\sqrt{x-1}\sqrt{2x+1}=0\)
c) \(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)
d) \(\sqrt{x}+\frac{16}{\sqrt{x}}=8\)
rút gọn:
A=\(x-4-\sqrt{16-8x^2+x^4}\left(x>4\right)\)
B=\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\left(a,b>0,a\ne b\right)\)
1) Cho biểu thức \(A=\frac{\sqrt{x}+1}{x+4 \sqrt{x}+4} :\left(\frac{x}{x+2 \sqrt{x}}+\frac{x}{\sqrt{x}+2}\right)\), với x>0
a) Rút gọn A
b) Tìm tất cả các giá trị của x để \(A \geq \frac{1}{3 \sqrt{x}}\)
2) Cho biểu thức \(P=\left(1-\frac{1}{\sqrt{x}}\right) :\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\), với \(x>0\) và \(x \neq 1\)
a) Rút gọn P
b) Tim giá trị của P tại \(x=\sqrt{2022+4 \sqrt{2018}}-\sqrt{2022-4 \sqrt{2018}}\)
3) Cho biểu thức \(P=\left(\frac{x-6}{x+3 \sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right) : \frac{2 \sqrt{x}-6}{x+1}\), với \(x>0 ; x \neq 9\)
a) Rút gọn P
b) Tìm giá trị của x để P=1
rút gọn
P = \(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}}{x-4}\) với x > 0, x \(\ne\) 4