\(\sqrt{3}x^2-\sqrt{2}=0\)
\(\Rightarrow\sqrt{3}x^2=\sqrt{2}\)
\(\Rightarrow x^2=\sqrt{\dfrac{2}{3}}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\sqrt[4]{\dfrac{2}{3}}\\x=\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\)
\(\sqrt{3}x^2-\sqrt{2}=0\)
\(\Rightarrow\sqrt{3}x^2=\sqrt{2}\)
\(\Rightarrow x^2=\sqrt{\dfrac{2}{3}}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\sqrt[4]{\dfrac{2}{3}}\\x=\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\)
Tìm x biết
1) \(\sqrt{x-1}=3\)
2) \(\sqrt{x}-\sqrt{3}=0\)
3) \(4-5\sqrt{x}=-1\)
4) \(\sqrt{x}\left(\sqrt{ }x-1\right)=0\)
5)\(\left(\sqrt{ }x-2\right)\left(\sqrt{ }x+3\right)=0\)
6) \(\left(\sqrt{ }x+1\right)\left(\sqrt{ }x+2\right)=0\)
7) \(^{^{ }}x2+2\sqrt{2x}+2=1\)
Giải các phương trình vô tỉ (Phương trình có chứa căn thức)
1) \(\sqrt{x^2-20x+100}=10\)
2) \(\sqrt{x+2\sqrt{x}+1}=6\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
7) \(\sqrt{2x^2-2x\sqrt{6}+3}-\sqrt{5-\sqrt{24}}=0\)
8) \(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{2}+2}=0\)
9) \(\sqrt{11-\sqrt{120}}=\sqrt{5x^2+x\sqrt{120}+6}\)
Bài 1. Thực hiện phép tính
a) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\) b) \(\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{2}+\sqrt{3}}\)
c) \(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
Bài 2. Giải phương trình:
a) \(\sqrt{x^2-x-2}-\sqrt{x-2}=0\) b) \(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
c) \(\sqrt{x^2-1}+1=x^2\) d) \(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4\)
e) \(2^3\sqrt{1-2x}+6=0\)
cần gấp lắm, xíu ik hok rồi, mn giúp vs
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)
Bài 1: giải các PT sau
a) \(2\sqrt{x}=6\)
b) \(4-5\sqrt{x}=-1\)
c) \(4\sqrt{x}=-3\)
d) \(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
e) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=0\)
f) \(\left(\sqrt{x}+\sqrt{2}\right)\left(\sqrt{x}+3\right)=0\)
Bài 2:
\(9\left(x+2\right)^2-108=0\)
Cho x=\(\sqrt{2+\sqrt{2+\sqrt{3}}}\)-\(\sqrt{6-3\sqrt{2+\sqrt{3}}}\). CMR: x4-16x2+32=0
giải các phương trình sau
a)\(\sqrt{x^2-1}\)+1=x2
b)\(\sqrt{x-2}\)+\(\sqrt{x-3}\)= -5
c) \(\sqrt{x^2+4x+4}\)+|x-4|=0
1) rút gọn biểu thức sau :
a) \(\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\) b) \(\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\) c ) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
d) \(\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\) e) \(\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\) ( với x>0 , y>0 )
f) \(\sqrt{8-2\sqrt{15}}+\sqrt{5}+\sqrt{3}\) g) \(\sqrt{9-2\sqrt{4}}-\sqrt{9+2\sqrt{14}}\)
P=\(\dfrac{2\sqrt{x}-3}{\sqrt{x}-4}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)( với x >=0;x khác 16) .Rút gọn biểu thức P
Giải phương trình:
a,\(\sqrt{x^2-4}-\sqrt{x-2}=0\)
b,\(\sqrt{x^2-9}-\sqrt{x+3}=0\)