ĐKXĐ: \(x\ge0;y\ge0;x\ne y\)
A = \(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\frac{1}{x-y}\)+\(\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
= \(\left(x-2\sqrt{xy}+y\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)+\(\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=\(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=\(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}=1\)
Vậy A = 1