Bài 2
a) A= \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(-2\right)^6}-\sqrt{\left(1+\sqrt{2}\right)^2}\)
b) B= \(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}\)
c) C= \(\sqrt{7-4\sqrt{3}}\)
d) D= \(2\sqrt{7+4\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)
e) E= \(\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{81}}\)
Bài 4:
a) \(\sqrt{x-1}=2\)
b) \(\sqrt{x^2-3x+2}=\sqrt{2}\)
c) \(\sqrt{4x+1}=x+1\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
e) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
f)
Rút gọn:
a)\(\sqrt{\left(\sqrt{7-2}\right)^2}\)
b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)
c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{2+\sqrt{3}}+\sqrt{2a-3}\)
e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
f)\(\sqrt{9a^{ }2}+3a-7\left(v\text{ơ}\text{í}a< 0\right)\)
g) \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)(vơí x>\(\dfrac{1}{2}\))
h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)
i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}+}2\left(a-1\right)\)(vơí a>=0)
Tìm x:
a) \(\left(5x-6\right)^2-\frac{1}{\sqrt{5x-7}}=x^2-\frac{1}{\sqrt{x-1}}\)
b) \(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)
c) \(\frac{\sqrt{x+1}-2}{\sqrt[3]{2x+1}-3}=\frac{1}{x+2}\)
d) \(-2x^3+10x^2-17x+8=2x^2\sqrt[3]{5x-x^2}\)
e) \(9x^2-28x+21=\sqrt{x-1}\)
f) \(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\sqrt{1+x+x^2}+1=0\)
Mng giúp em với ạ, em cảm ơn
Giải các phương trình sau:
a) \(\sqrt{3x+9}\)+\(\sqrt{x-4}\)=0
b)\(\sqrt{4x^2+4x+1}\)+\(\sqrt{\left(x-3\right)^2}\)=0
c)\(\sqrt{x^2-4}\) + \(\sqrt{6-3x}\)=0
Tìm x
a)\(\sqrt{x^2-1}\) -\(x^2\)+1=0
b)\(\sqrt{x+2\sqrt{x-1}}\) + \(\sqrt{x-2\sqrt{x-1}}\)
c) \(\sqrt{3x^2+12x+16}\) + \(\sqrt{4x^2+6x+25}\)=1-\(x^2\)-4x
2.Rút gọn
a)\(\sqrt{\left(1-\sqrt{2}\right)^2}\) + \(\sqrt{\left(\sqrt{2}-3\right)^2}\)
b) \(\sqrt{4-2\sqrt{3}}\) + \(\sqrt{7}\) - \(\sqrt{48}\)
c) \(\sqrt{3-\sqrt{8}}\) (3+\(\sqrt{5}\)) ( \(\sqrt{16-\sqrt{2}}\))
Giải PT:
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
\(\sqrt{7-\frac{1}{5}x}\) 2) \(\sqrt{\frac{4}{3}+2x}\)
\(\sqrt{\frac{2}{x^2+\frac{1}{2}}}\) 4) \(\sqrt{\frac{-2}{x^2+\frac{1}{3}}}\)
\(\sqrt{\frac{-5}{x^2+4x}}\) 6) \(\sqrt{\frac{5}{x^2+4x}}\)
\(\sqrt{\frac{2}{x^2+3x-4}}\) 8)\(\sqrt{\frac{2}{3x^2+5x-8}}\)
\(\sqrt{\frac{-6}{x^2-25}}\) 10)\(\sqrt{\frac{-7}{4x^2-9}}\)
\(\sqrt{\frac{2}{4x^2+x+3}}\) Gỉai phương trình
Giúp mk vs các bn mk bí rồi.
Rút gọn các biểu thức sau:
a,\(\sqrt{16a^2}\) - 5a với a ≥ 0
b, 3x + 2 - \(\sqrt{9x^2+6x+1}\) với x ≥ \(\frac{1}{3}\)
c,\(\sqrt{8+2\sqrt{7}}\) - \(\sqrt{7}\)
d,\(\sqrt{14-2\sqrt{13}}\) + \(\sqrt{14+2\sqrt{13}}\)
e, 2x - \(\sqrt{4x^2-4x+1}\) với x > \(\frac{1}{2}\)
g, |x-2| + \(\frac{\sqrt{x^2-4x+4}}{x-2}\) với x > 2
Giải phương trình :
a) \(\sqrt{4x^2-9}\) = 2\(\sqrt{2x+3}\)
b) 2x-3 \(\sqrt{2x-1}\) = 5
c) 3x-7 \(\sqrt{x}\) +4 = 0
d) x2 + 4x +5 = 2\(\sqrt{2x+3}\)