1.Rút gọn: A= \(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
2.Giải phương trình
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
gấp lắm, ai giúp với
Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
giải hệ phương trình sau
1)\(\left\{{}\begin{matrix}\left(\sqrt{x^2+1}-4x^2y+x\right)\left(\sqrt{4y^2+1}+1\right)=8x^2y^2\\x^2y-x+2=0\end{matrix}\right.\)
Rút gọn:
a) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
b) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
ghpt
1) \(\left\{{}\begin{matrix}3\left(2-x\right)\sqrt{2-y^2}=2-y+\dfrac{4}{x+1}\\\left(x^2+xy-x+y-2\right)\sqrt{2-y^2}+2=x+y\end{matrix}\right.\)
Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
\(\left\{{}\begin{matrix}\sqrt{3y-1}+x^2=3y+1+\sqrt{x}\\2\sqrt{x^2+3x-y}-\sqrt{4x+y^2}=x+1\end{matrix}\right.\)
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0
Rút gọn
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(B=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)