\(\sqrt{2}(\sqrt{3}+1)\)
\(\sqrt{3}(1+\sqrt{5})\)
\(\sqrt{2}(\sqrt{3}+1)\)
\(\sqrt{3}(1+\sqrt{5})\)
rút gọn các biểu thức:
a) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
c) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
d) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
e) \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
f) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
giải giúp mjk vs m.n :]] arigatou <3
Tính:
a) \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)
b) \(B=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{15}}\)
c) \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
a.\(\sqrt{15+6\sqrt{6}}\)
b.\(\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
c. \(\sqrt{3-2\sqrt{2}}+\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
a,\(\left(\sqrt{27}-\sqrt{12}-\sqrt{108}-\sqrt{192}\right):\sqrt{3}\)
b,\(\frac{\sqrt{2}-\sqrt{6}}{1-\sqrt{3}}\frac{3+2\sqrt{7}}{1+\sqrt{3}}\)
c,(\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Bài 1: So sánh
a)\(\sqrt{2}+\sqrt{3} \) và \(\sqrt{10}\) b) \(\sqrt{3}+2\) và \(\sqrt{2}+\sqrt{6}\)
c)16 và \(\sqrt{15}.\sqrt{17}\) d)8 và \(\sqrt{15} +\sqrt{17}\)
Bài 2:Rút gọn các biểu thức sau:
a)\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) b)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
BT: Tính
a, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
b,\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
c,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Bài 1: Rút gọn
a) \(\sqrt{13-2\sqrt{42}}\)
b) \(\sqrt{46+6\sqrt{5}}\)
c) \(\sqrt{12-3\sqrt{15}}\)
d) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
e) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
Bài 1: Tính
a) \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Bài 2
a) Cho x<y<0. Tính (thu gọn) A=\(\sqrt{x^2}+\sqrt{y^2}+\sqrt{\left(x+y\right)^2}\)
b) Tình a,b,c biết a+b+c= \(2\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
Tính B=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
C=\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
D=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
E=\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}-\sqrt{2}-15\)
F=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)