Do \(f'\left( x \right) < 0\forall x \in \mathbb{R}\) nên hàm số nghịch biến và liên tục trên \(\mathbb{R}\).
Vậy giá trị lớn nhất của hàm số trên đoạn \(\left[ {1;2} \right]\) bằng \(f\left( 1 \right)\)
Đúng 0
Bình luận (0)