Hiệu chỉnh lại bảng số liệu ta có:
Thời gian t (phút) | [0;1) | [1; 2) | [2; 3) | [3; 4) | [4; 5) |
Số cuộc gọi | 8 | 17 | 25 | 20 | 10 |
Cỡ mẫu \(n = 80\). Giả sử \({x_1},{x_2},...,{x_{80}}\) là thời gian đàm thoại của 80 cuộc gọi và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Vì \(\frac{n}{4} = 20\) và \(8 < 20 < 8 + 17\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {1;2} \right)\) và tứ phân vị thứ nhất là: \({Q_1} = 1 + \frac{{\frac{{80}}{4} - 8}}{{17}}.1 = \frac{{29}}{{17}}\)
Vì \(\frac{{3n}}{4} = 60\) và \(8 + 17 + 25 < 20 < 8 + 17 + 25 + 20\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {3;4} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 3 + \frac{{\frac{{3.80}}{4} - \left( {8 + 17 + 25} \right)}}{{20}}.1 = 3,5\)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(3,5 - \frac{{29}}{{17}} = \frac{{61}}{{34}}\)