a,Đk: \(x>0\)
Sau khi rút gọn được M=\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
Có \(x^2-x=0\) <=> \(x\left(x-1\right)=0\)=>x-1=0(vì x>0)
<=>x=1(t/m)
Thay x=1 vào b/thức M đã rút gọn có:
M= \(\frac{\sqrt{1}-2}{\sqrt{1}}=-1\)
b, Có \(M=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)
Để M \(\in Z\) <=> \(\frac{2}{\sqrt{x}}\in Z\) => \(\frac{2}{\sqrt{x}}\in N^+\)
Với \(x\in N^+\)=> \(\left[{}\begin{matrix}\sqrt{x}\in N^+\\\sqrt{x}\notin N^+\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{x}}\in N^+\left(tm\right)\\\frac{2}{\sqrt{x}}\notin N^+\left(ktm\right)\end{matrix}\right.\)
=> \(\sqrt{x}\) thuộc ước tự nhiên của 2
<=> \(\sqrt{x}\in\left\{1,2\right\}\) <=> \(x\in\left\{1;4\right\}\)
Vậy để M\(\in Z< =>x\in\left\{1;4\right\}\)