\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}\)
\(=\dfrac{49}{100}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}\)
\(=\dfrac{49}{100}\)
a) \(\dfrac{1}{2.3}x+\dfrac{1}{3.4}x+\dfrac{1}{4.5}x+....+\dfrac{1}{49.50}x=1\)
b) \(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{55}\)
Rút gọn phân số sau thành phân số tối giản:
a, \(\dfrac{5^3.90.4^3}{25^2.3^22^{13}}\)
b, \(\dfrac{15^2.16^4-15^3.16^3}{12^2.20^3-20^2.12^3}\)
c, \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
Bài 1: Tính hợp lý. (nếu có thể)
A= 1/10+1/40+1/88+1/154+1/238+1/340
B=2 +1/547 . 3/211 - 546/547 - 4/547.211
D= 1/3+1/6+1/12+1/24+1/48
E= 1/2 - 1/4 + 1/8 - 1/16 +...+ 1/2048
F= 0,5 - 1/3 - 0,4 -5/7 - 1/6 + 4/35 - 1/41
D= 1/3 +1/6 +1/12 +1/24 +1/48 + 1/96
E= 1/2 - 1/4 + 1/8 - 1/16 +...+ 1/2048
F= -0,5 -1/3 - 0,4 - 5/7 - 1/6 + 4/35 - 1/41
Ai đó giúp mik vớiiiii
E= ( 1+ \(\frac{1}{2}\)) . (1+\(\frac{1}{3}\)) . (1+\(\frac{1}{4}\)) ... (1+\(\frac{1}{99}\))
H= 1\(\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}...1\frac{1}{2015}\)
D= 1+\(\frac{1}{3}\)+\(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
G= (1-\(\frac{1}{2}\)) . ( 1-\(\frac{1}{3}\)) . (1-\(\frac{1}{4}\))....(1-\(\frac{1}{2015}\)
1/4+1/12+1/24+1/40+1/60+1/84
1/4+1/12+1/24+1/40+1/60+1/84
A = 1/2+1/4+1/8+1/16+1/32+...+1/1024