Bài 1: Tính đơn diệu và cực trị của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Kim ngạch xuất khẩu rau quả của Việt Nam trong các năm từ 2010 và 2017 có thể được tính xấp xỉ bằng công thức f(x) = 0,01x3 – 0,04x2 + 0,25x + 0,44 (tỉ USD) với x là số năm tính từ 2010 đến 2017 (0 ≤ x ≤ 7).

(Theo: https://infographics.vn/interactive-xuat-khau-rau-qua-du-bao-bung-no-dat-4-ty-usd-trong-nam-2023/116220.vna)

a) Tính đạo hàm của hàm số y = f(x).

b) Chứng minh rằng kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

datcoder
28 tháng 10 lúc 6:55

a) \(y' = f'(x) = 0,03{x^2} - 0,08x + 0,25\).

b) Tập xác định: \(D = [0;7]\).

Ta có: \(y' = f'(x) > 0\forall x \in \mathbb{R}\) nên \(y = f(x)\) luôn đồng biến \(\forall x \in [0;7]\).

Hàm f(x) đồng biến trên [0;7] nên giá trị của f(x) tăng dần trên [0;7].

Vậy kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.