Ta có: \(A=\dfrac{-9}{10^{2010}}+\dfrac{-19}{10^{2011}}=\dfrac{-9}{10^{2010}}+\dfrac{-9}{10^{2011}}+\dfrac{-10}{10^{2011}}\)
\(B=\dfrac{-9}{10^{2011}}+\dfrac{-19}{10^{2010}}=\dfrac{-9}{10^{2011}}+\dfrac{-9}{10^{2010}}+\dfrac{-10}{10^{2010}}\)
So sánh A với B ta thấy: \(\dfrac{-9}{10^{2010}}=\dfrac{-9}{10^{2010}};\dfrac{-9}{10^{2011}}=\dfrac{-9}{10^{2011}}\)
Mà \(\dfrac{-10}{10^{2011}}>\dfrac{-10}{10^{2010}}\)
\(\Rightarrow\) \(\dfrac{-9}{10^{2010}}+\dfrac{-9}{10^{2011}}+\dfrac{-10}{10^{2011}}>\dfrac{-9}{10^{2010}}+\dfrac{-9}{10^{2011}}+\dfrac{-10}{10^{2010}}\)
\(\Rightarrow\) \(A>B\)
Vậy A > B.