a) \(y = - 2{x^3} - 3{x^2} + 1\)
Tập xác định: \(D = \mathbb{R}\)
- Chiều biến thiên:
\(y' = - 6{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 0\end{array} \right.\)
Trên các khoảng (\( - \infty \); -1), (0; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-1; 0) thì y' > 0 nên hàm số đồng biến trên khoảng đó.
- Cực trị:
Hàm số đạt cực đại tại x = 0 và \({y_{cd}} = 1\)
Hàm số đạt cực tiểu tại x = -1 và \({y_{ct}} = 0\)
- Các giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} - 3{x^2} + 1) = + \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } ( - 2{x^3} - 3{x^2} + 1) = - \infty \)
- Bảng biến thiên:
Khi x = 0 thì y = 1 nên (0; 1) là giao điểm của đồ thị với trục Oy
Ta có: \(y = 0 \Leftrightarrow - 2{x^3} - 3{x^2} + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Vậy đồ thị của hàm số giao với trục Ox tại hai điểm (-1; 0) và (\(\frac{1}{2}\); 0)
b) \(y = {x^3} + 3{x^2} + 3x + 1\)
Tập xác định: \(D = \mathbb{R}\)
- Chiều biến thiên:
\(y' = 3{x^2} + 6x + 3 = 0 \Leftrightarrow x = - 1\)
\(y' \ge 0\forall x \in \mathbb{R}\)nên hàm số đồng biến trên \(\mathbb{R}\)
- Cực trị:
Hàm số không có cực trị
- Các giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } ({x^3} + 3{x^2} + 3x + 1) = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } ({x^3} + 3{x^2} + 3x + 1) = + \infty \)
- Bảng biến thiên:
Khi x = 0 thì y = 1 nên (0; 1) là giao điểm của đồ thị với trục Oy
Ta có: \(y = 0 \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 = 0 \Leftrightarrow x = - 1\)
Vậy đồ thị của hàm số giao với trục Ox tại điểm (-1; 0)