Đặt \(\sqrt{5-x}=t\Rightarrow5-x=t^2\Rightarrow dx=-2t.dt\)
\(\left\{{}\begin{matrix}x=-4\Rightarrow t=3\\x=4\Rightarrow t=1\end{matrix}\right.\)
\(I=\int\limits^1_3\dfrac{-2t.dt}{1+t}=\int\limits^3_1\left(2-\dfrac{2}{t+1}\right)dt=\left(2t-2ln\left|t+1\right|\right)|^3_1=4-2ln2\)
\(\Rightarrow ab=8\)