Bài 2: Tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Ngọc Lê

\(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{\tan^2x-\cos^2x}{\sin^2x}dx\)

Akai Haruma
3 tháng 12 2017 lúc 0:38

Lời giải:

Xét \(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\int \frac{\tan ^2x}{\sin ^2x}dx-\int \frac{\cos ^2x}{\sin ^2x}dx\)

Có:

\(\int \frac{\tan ^2x}{\sin ^2x}dx=\int \frac{\sin ^2x}{\cos ^2x. \sin^2 x}dx=\int \frac{1}{\cos ^2x}dx\)

\(=\int d(\tan x)=\tan x+c\)

Và:

\(\int \frac{\cos ^2x}{\sin ^2x}dx=\int \frac{1-\sin ^2x}{\sin ^2x}dx=\int \frac{1}{\sin ^2x}dx-\int dx\)

\(=-\int d(\cot x)-x+c=-\cot x-x+c\)

Do đó:

\(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\tan x+c-(-\cot x-x+c)=\tan x+\cot x+x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\frac{4\sqrt{3}}{3}+\frac{\pi}{3}-\frac{4\sqrt{3}}{3}-\frac{\pi}{6}=\frac{\pi}{6}\)


Các câu hỏi tương tự
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Nguyễn Trần Khánh Linh
Xem chi tiết
kiếp đỏ đen
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Thanh Tam Vu
Xem chi tiết