Bài 7: Giải bài toán bằng cách lập phương trình (Tiếp).

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thanh Tâm Anh

Hai vòi nước cùng chảy vào một bể thì bể sẽ đầy trong 3 giờ 20 phút. Người ta cho vòi thứ nhất chảy trong 3 giờ, vòi thứ hai chảy trong 2 giờ thì cả hai vòi chảy được 4 5  bể. Thời gian vòi một chảy một mình đầy bể

Bùii Khoii
8 tháng 4 2023 lúc 20:30

Giả sử thời gian cần thiết để vòi thứ nhất chảy đầy bể là $a$ giờ, và thời gian cần thiết để vòi thứ hai chảy đầy bể là $b$ giờ. Theo đề bài, ta có:

1. Khi cả hai vòi cùng chảy, bể đầy trong 3 giờ 20 phút (tức là 3 giờ 20/60 = 3 + 1/3 = 10/3 giờ). Ta có công thức:
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{\frac{10}{3}}$$

2. Vòi thứ nhất chảy một mình trong 7/10 của 2 giờ (tức là 1.4 giờ), sau đó vòi thứ hai chảy một mình trong 3 giờ thì cả hai vòi chảy được bể. Ta có công thức:
$$\frac{1.4}{a} + \frac{3}{b} = 1$$

Bây giờ, ta sẽ giải hệ phương trình trên để tìm $a$ và $b$.

**Bước 1:** Từ phương trình (1), ta có:
$$b = \frac{a\left(\frac{10}{3}\right)}{a - \frac{10}{3}}$$

**Bước 2:** Thay biểu thức của $b$ tìm được ở trên vào phương trình (2), ta được:
$$\frac{1.4}{a} + \frac{3}{\frac{a\left(\frac{10}{3}\right)}{a - \frac{10}{3}}} = 1$$

**Bước 3:** Giải phương trình trên, ta tìm được $a = 4$ giờ.

**Bước 4:** Thay $a = 4$ vào biểu thức của $b$, ta tìm được $b = 6$ giờ.

Vậy, thời gian mỗi vòi chảy một mình đầy bể là 4 giờ và 6 giờ.

Bùii Khoii
12 tháng 6 2023 lúc 21:07

Gọi thời gian mà ô tô cần để đến Hải Phòng là $t$ (đơn vị giờ).

Khi xuất phát, ô tô đi được trong 30 phút đầu tiên với vận tốc 40 km/h, nên khoảng cách đã đi được trong 30 phút đó là:

$$d_1 = 40 \times \frac{1}{2} = 20 \text{ km}$$

Khoảng cách còn lại để đi là:

$$d_2 = 100 - d_1 = 80 \text{ km}$$

Khi tăng vận tốc thêm 10 km/h, ô tô đi được trong $t - \frac{1}{2}$ giờ với vận tốc 50 km/h, nên khoảng cách đã đi được trong khoảng thời gian đó là:

$$d_3 = 50 \times \left(t - \frac{1}{2}\right)$$

Tổng khoảng cách đã đi được là:

$$d_1 + d_2 + d_3 = 20 + 80 + 50 \times \left(t - \frac{1}{2}\right) = 130 + 50t - 25 = 105 + 50t$$

Theo đề bài, ô tô đến sớm hơn dự định 24 phút, tức là thời gian thực tế để ô tô đi từ Hà Nội đến Hải Phòng là $t - \frac{1}{2} - \frac{2}{5} = t - \frac{9}{10}$ (đơn vị giờ). Ta có phương trình:

$$\frac{d_1 + d_2 + d_3}{60} = t - \frac{9}{10}$$

Thay $d_1 + d_2 + d_3$ bằng $105 + 50t$, ta được:

$$\frac{105 + 50t}{60} = t - \frac{9}{10}$$

Giải phương trình trên ta có:

$$t = \frac{465}{38} \approx 12.24$$

Vậy ô tô dự định đến Hải Phòng lúc 18 giờ 14 phút ($6 \text{ giờ } + 12 \text{ giờ } 14 \text{ phút}$).


Các câu hỏi tương tự
Thảo Trang
Xem chi tiết
ThaoMy
Xem chi tiết
Thảo Trang
Xem chi tiết
Hiền Anh
Xem chi tiết
Seo ChangBin
Xem chi tiết
illumina
Xem chi tiết
Nguyen Minh Phuc
Xem chi tiết
Vyyy
Xem chi tiết
Hiếu
Xem chi tiết