Gọi thời gian hoàn thành công việc của hai người thợ lần lượt là x,y (giờ) \(\left( {x,y > 0} \right)\)
1 giờ người thợ thứ nhất làm được \(\frac{1}{x}\) công việc
1 giờ người thứ hai làm được \(\frac{1}{y}\) công việc
Hai người thợ cùng làm một công việc trong 16 giờ thì xong nên một giờ hai người làm được \(\frac{1}{{16}}\) (công việc).
Nên ta có phương trình \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{16}}\)
Người thứ nhất làm trong 3 giờ làm được \(3.\frac{1}{x} = \frac{3}{x}\) công việc
Người thứ hai làm trong 6 giờ làm được \(6.\frac{1}{y} = \frac{6}{y}\) công việc
Thì cả hai người hoàn thành được \(25\% = \frac{1}{4}\) công việc nên ta có phương trình \(\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{16}}\\\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\end{array} \right.\)
Nhân cả hai vế của phương trình thứ nhất với 3 ta được \(\frac{3}{x} + \frac{3}{y} = \frac{3}{{16}}\) từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{3}{x} + \frac{3}{y} = \frac{3}{{16}}\\\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\end{array} \right.\)
Trừ từng vế của hai phương trình ta có \(\left( {\frac{3}{x} + \frac{3}{y}} \right) - \left( {\frac{3}{x} + \frac{6}{y}} \right) = \frac{3}{{16}} - \frac{1}{4}\) hay \( - \frac{3}{y} = - \frac{1}{{16}}\) nên \(y = 48\left( {t/m} \right).\)
Thay \(y = 48\) vào phương trình đầu ta có \(x = 24\left( {t/m} \right).\)
Vậy người thứ nhất cần làm trong 24 giờ, người thứ hai cần làm trong 48 giờ thì xong công việc.