Vật 1 : \(\overrightarrow{P_1}+\overrightarrow{Q_1}+\overrightarrow{F_1}+\overrightarrow{F_1'}=m\overrightarrow{a}_1\)
=> F1 - F'2 = ma= \(m\omega\left(l_0+\Delta l_1\right)\left(1\right)\)
Vật 2 : \(\overrightarrow{P_2}+\overrightarrow{Q_2}+\overrightarrow{F_2}=m\overrightarrow{a_1}\)
=> F2 = \(m\omega^2\left(2l_0+\Delta l_1+\Delta l_2\right)\left(2\right)\)
Ta có: F2 = F'2=\(k\Delta l_{2;}F_1=k\Delta l_1;\omega=2\pi n\); thay vào (1); (2) giải hệ => \(\left\{{}\begin{matrix}\Delta l_1=21cm\\\Delta l_2=14cm\end{matrix}\right.\)
=> l1 =57cm; l2 = 50cm.