a, Ta có: H = \(\frac{2x.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}\) + \(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\) - \(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
= \(\frac{2x}{x-1}+\frac{\sqrt{x}-1}{x-1}-\frac{\sqrt{x}+1}{x-1}\)
= \(\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{x-1}\)
= \(\frac{2x-2}{x-1}\)
= 2
b, Ta có: \(\sqrt{x}\) < H <=> \(\sqrt{x}\) < 2
<=> x < 4
Vậy x = 4 thì \(\sqrt{x}\) < H