Vì \(\Delta = {\left( { - 5} \right)^2} - 4.1.3 = 13 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo định lí Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 3\).
a) Ta có:
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.3 = 19\)
b) Cách 1. Ta có:
\({\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 \)
\(= {\left( {{x_1}^2 + {x_2}}^2 \right)} - 2{x_1}{x_2} = 19 - 2.3 = 13\)
Cách 2. Ta có:
\({\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 \)
\(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {5^2} - 4.3 = 13\)
Đúng 0
Bình luận (0)