\(1.\left(x-5\right)^2+\left(x+3\right)^2=2\left(x-4\right)\left(x+4\right)-5x+7\\ \Leftrightarrow\left(x^2-10x+25\right)+\left(x^2+6x+9\right)=2\left(x^2-16\right)-5x+7\\ \Leftrightarrow x^2-10x+25+x^2+6x+9=2x^2-32-5x+7\\ \Leftrightarrow2x^2-4x+34=2x^2-5x-25\\ \Leftrightarrow2x^2-4x+34-2x^2+5x+25=0\\ \Leftrightarrow x+59=0\\ \Leftrightarrow x=-59\)
\(2.\left(x+3\right)\left(x-2\right)-2\left(x+1\right)^2=\left(x-3\right)^2-2x^2+4x\\ \Leftrightarrow x^2-2x+3x-6-2\left(x^2+2x+1\right)=\left(x^2-6x+9\right)-2x^2+4x\\ \Leftrightarrow x^2-2x+3x-6-2x^2-4x-2=x^2-6x+9-2x^2+4x\\ \Leftrightarrow-x^2-3x-8=-x^2-2x+9\\ \Leftrightarrow-x^2-3x-8+x^2+2x-9=0\\ \Leftrightarrow-x-17=0\\ \Leftrightarrow-x=17\\ \Leftrightarrow x=-17\)