d) \(\sqrt{x^2-2x+1}\) = \(\sqrt{6+4\sqrt{2}}\) - \(\sqrt{6-4\sqrt{2}}\)
⇔ \(\sqrt{x^2-2x+1}\) = \(\sqrt{\left(2+\sqrt{2}\right)^2}\) - \(\sqrt{\left(2-\sqrt{2}\right)^2}\)
⇔ \(\sqrt{x^2-2x+1}\) = 2 + \(\sqrt{2}\) - 2 +\(\sqrt{2}\)
⇔ \(\sqrt{x^2-2x+1}\) = \(2\sqrt{2}\)
⇔ x2 - 2x +1 = 8
⇔ x2 - 2x +1 -8 = 0
⇔ x2 - 2x - 7 = 0
x1 = 1 + \(2\sqrt{2}\) (nhận)
x2 = 1 - \(2\sqrt{2}\) (nhận)
Vậy S = \(\left\{1+2\sqrt{2};1-2\sqrt{2}\right\}\)
c) \(\sqrt{x+5}\) = 1 - x
⇔ x + 5 = 1 - 2x + x2
⇔ 1 - 2x + x2 - x - 5 = 0
⇔ x2 - 3x - 4 = 0
x1 = 4 (nhận)
x2 = -1 (nhận)
Vậy S = {4;-1}