giải các phương trình sau
1, √x^2+4x + √ x^2/2 -8 =0
2, √ x-1 + √ x^2 -3x +2 =0
3,√ 2+x +√ 4x^2-6x-10 =0
4, √ x^2 -9 + √x^2 -4x+3 =0
5, √ -2x^2 +3x+5 +√2x^2 -7x -15 =0
Giải phương trình :
a) \(\sqrt{4x^2-9}\) = 2\(\sqrt{2x+3}\)
b) 2x-3 \(\sqrt{2x-1}\) = 5
c) 3x-7 \(\sqrt{x}\) +4 = 0
d) x2 + 4x +5 = 2\(\sqrt{2x+3}\)
Giải phương trình
1) \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
2) \(9x^2-x-4=2\sqrt{x+3}\)
3) \(x^2+\sqrt{x+5}=5\)
4) \(2x^2+2x+1=\left(4x-1\right).\sqrt{x^2+1}\)
5) \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
Giải các phương trình:
1) \(\sqrt{2x+5}=\sqrt{1-x}\)
2) \(\sqrt{2x-1}=\sqrt{x-1}\)
3) \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
4) \(\sqrt{x^2-x}=\sqrt{3-x}\)
5) \(\sqrt{x^2-x}=\sqrt{3x-5}\)
6) \(\sqrt{x^2-x-6}=\sqrt{x-3}\)
Giải các phương trình vô tỉ (Phương trình có chứa căn thức)
1) \(\sqrt{x^2-20x+100}=10\)
2) \(\sqrt{x+2\sqrt{x}+1}=6\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
7) \(\sqrt{2x^2-2x\sqrt{6}+3}-\sqrt{5-\sqrt{24}}=0\)
8) \(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{2}+2}=0\)
9) \(\sqrt{11-\sqrt{120}}=\sqrt{5x^2+x\sqrt{120}+6}\)
giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)
giải phương trình \(2\left(x^2+2x+3\right)=5\sqrt{x^3-3x^2+3x+2}\)
giải phương trình
a,2x/x-3=x^2+11x-6/x^2-9
b,3x^2+(1-căn3)x+căn3-4=0
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)