Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.
b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: 34 – 19 = 15(tuổi)
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: 31 – 19 = 12(tuổi)
Cỡ mẫu \(n = 100\)
Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực A được xếp theo thứ tự không giảm.
Ta có: \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{10}} \in [19;22)\); \({x_{11}}; \ldots ;{\rm{ }}{x_{37}} \in [22;25)\);\({x_{38}}; \ldots ;{\rm{ }}{x_{68}} \in [25;28)\);\({x_{69}}; \ldots ;{\rm{ }}{x_{93}} \in [28;31)\);\({x_{94}}; \ldots ;{\rm{ }}{x_{100}} \in [31;34)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({x_{25}} + {x_{26}}) \in [22;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}({x_{75}} + {x_{76}}) \in [28;31)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\)
Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực B được xếp theo thứ tự không giảm.
Ta có: \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{47}} \in [19;22)\); \({y_{48}}; \ldots ;{\rm{ }}{y_{87}} \in [22;25)\);\({y_{88}}; \ldots ;{\rm{ }}{y_{98}} \in [25;30)\);\({y_{99}};{y_{100}} \in [28;31)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({y_{25}} + {y_{26}}) \in [19;22)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}' = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}({y_{75}} + {y_{76}}) \in [22;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}' = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}' = {Q_3}' - {Q_1}' = \frac{{1647}}{{470}}\)
b) Có \({\Delta _Q}' < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn