Ta có 3 triệu đồng = 3 000 nghìn đồng.
Vì doanh thu của cửa hàng đạt 3 triệu đồng nên R(x) = 3 000.
Thay R(x) = 3 000 vào R(x) = x(220 – 4x), ta được:
3 000 = x(220 – 4x)
3 000 = 220x – 4x2
4x2 – 220x + 3 000 = 0
x2 – 55x + 750 = 0.
Ta có ∆ = (–55)2 – 4.1.750 = 25 > 0 và
Phương trình trên có hai nghiệm phân biệt là:
Vì 30 ≤ x ≤ 50 nên ta chọn x = 30 (nghìn đồng).
Vậy nếu muốn doanh thu của cửa hàng đạt 3 triệu đồng thì giá bán của mỗi bát phở là 30 nghìn đồng
Để doanh thu cửa hàng đạt 3 triệu đồng thì \(x\left( {220 - 4x} \right) = 3\;000\)
hay \( - {x^2} + 55x - 750 = 0\)
Ta có: \(\Delta = {55^2} - 4.\left( { - 1} \right).\left( { - 750} \right) = 25 > 0\) nên phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 55 + \sqrt {25} }}{{ - 2}} = 25\left( {KTM} \right);{x_2} = \frac{{ - 55 - \sqrt {25} }}{{ - 2}} = 30\left( {TM} \right)\)
Vậy để doanh thu cửa hàng đạt 3 triệu đồng thì giá bán của mỗi bát phở phải là 30 000 đồng.