\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
\(E=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)
\(E=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{4949}{9900}\)
\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)
...
E = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
2E = \(\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\)
= \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}\right)\)+\(\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\) +...+ \(\left(\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
= \(\dfrac{1}{1.2}\) - \(\dfrac{1}{99.100}\)= \(\dfrac{1}{2}-\dfrac{1}{9900}\) = \(\dfrac{4949}{9900}\)