\(\dfrac{6}{1\cdot3\cdot5}+\dfrac{6}{5\cdot7\cdot9}+...+\dfrac{6}{13\cdot15\cdot17}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4+6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\)
C=\(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\)
E=\(\dfrac{6}{1.3.7}+\dfrac{6}{6.7.9}+...+\dfrac{6}{13.15.19}\)
F=\(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}}\)
G=\(10-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-...-\dfrac{1}{6}-\dfrac{1}{2}\)
Tìm x biết
a)\(\dfrac{11}{12}\).x + \(\dfrac{3}{4}\)= -\(\dfrac{1}{6}\)
b)3-\(\left(\dfrac{1}{6}-x\right)\).\(\dfrac{2}{3}\)=\(\dfrac{2}{3}\)
Chứng minh
a, A = \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{17}\) < 2
b, B = \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{13}\) + ... + \(\dfrac{1}{30}\) > \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\cdot\dfrac{4}{6}\cdot\dfrac{9}{12}\cdot\dfrac{16}{20}\)
a) Cho hai phân số \(\dfrac{1}{n}\) và \(\dfrac{1}{n+1},\left(n\in\mathbb{Z},n>0\right)\). Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng ?
b) Áp dụng kết quả trên để tính giá trị của các biểu thức sau :
\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(B=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
B4: Tính nhanh:
a, \(12.\dfrac{-7}{11}.\dfrac{5}{6}.\dfrac{22}{7}\)
b, \(\dfrac{-8}{15}.\dfrac{7}{9}.\dfrac{5}{8}.\left(-18\right)\)
tìm x
(x+1)+\(\left(x+\dfrac{1}{3}\right)+\left(x+\dfrac{1}{6}\right)+...+\left(x-\dfrac{1}{55}\right)=11\dfrac{9}{11}\)