\(\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+...+\dfrac{3}{59\cdot61}\)(đã sửa)
Đặt \(A=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+....+\dfrac{3}{59\cdot61}\)
\(\dfrac{2}{3}A=\dfrac{2}{3}\left(\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+....+\dfrac{3}{59\cdot61}\right)\)
\(\dfrac{2}{3}A=\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\)
\(\dfrac{2}{3}A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{2}{3}A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(A=\dfrac{56}{305}:\dfrac{2}{3}=\dfrac{56}{305}\cdot\dfrac{3}{2}=\dfrac{84}{305}\)