Bài 2: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Để làm thí nghiệm về chuyển động trong mặt phẳng nghiêng, người làm thí nghiệm đã thiết lập sẵn một hệ tọa độ Oxyz. Tính góc giữa mặt phẳng nghiêng (P): 4x + 11z + 5 = 0 và mặt sàn (Q): z – 1 = 0.

datcoder
30 tháng 10 lúc 14:03

Mặt phẳng nghiêng \(\left( P \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {4;0;11} \right).\)

Mặt sàn \(\left( Q \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{\left( Q \right)}}}  = \left( {0;0;1} \right).\)

Ta có \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( Q \right)}}} } \right)} \right| = \frac{{\left| {4.0 + 0.0 + 11.1} \right|}}{{\sqrt {{4^2} + {0^2} + {{11}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{11}}{{\sqrt {137} }}.\)

Suy ra \(\left( {\left( P \right),\left( Q \right)} \right) \approx {19^o}59'.\)