Ta co: OA' = 32- OA
\(\Delta AOB\infty\Delta A'OB'\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\) (1)
\(\Delta OIF'\infty\Delta A'B'F'\Rightarrow\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OF'}{A'F'}\left(2\right)\)
(1) (2) \(\Rightarrow\dfrac{AO}{A'O}=\dfrac{OF'}{A'F'}\)
\(\Leftrightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{OA'-OF'}{OF'}=\dfrac{OA'}{OA}\)
\(\Leftrightarrow\dfrac{OA'}{OF'}-1=\dfrac{OA'}{OA}\)
\(\Leftrightarrow\dfrac{1}{OF'}=\dfrac{1}{OA}+\dfrac{1}{OA'}\)
\(\Leftrightarrow\dfrac{1}{OF'}=\dfrac{1}{OA}+\dfrac{1}{32-OA}\)
\(\Leftrightarrow\dfrac{1}{OF'}=\dfrac{32-OA+OA}{OA\left(32-OA\right)}=\dfrac{32}{32.OA-OA^2}\)
\(\Leftrightarrow32.OA-OA^2-32.OF'=0\)
\(\Leftrightarrow OA^2-32.OA+32.OF'=0\)
\(\Rightarrow\Delta=32^2-4.32.OF'=0\)
=> 32(32 - 4.OF' ) =0
=> OF' = 8 cm