A=\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
B=\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
rút gọn biểu thức
\(\frac{3\sqrt{2}+2\sqrt{3}}{\sqrt{2}+\sqrt{3}}-\frac{5}{1+\sqrt{6}}\)
\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
CMR
\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2-\sqrt{2-\sqrt{3}}}}=12\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
M = \(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\frac{1}{\sqrt{6}}\)
N = \(\frac{6}{1+\sqrt{7}}+\frac{1}{\sqrt{7}}\)
O = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-\frac{1}{2-\sqrt{3}}\)
Rút gọn: \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
a)\(\sqrt{50}-\sqrt{3}.\sqrt{6}+\frac{\sqrt{22}}{\sqrt{11}}\)
b) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\sqrt{7+4\sqrt{3}}\)