A = 21+22+23+24+....+22010
A = (21+22) + (23+24) + .... + (22009+22010)
A = 2(1+2) + 23(1+2) + .... + 22009(1+2)
A = 2 . 3 + 23. 3 + ..... + 22009. 3
A = 3 . (2 + 22 + .... + 22009)
Vì 3 chia hết cho 3
\(\Rightarrow\) 3 . (2 + 22 + .... + 22009)
Hay A chia hết cho 3
Vậy A chia hết cho 3
A = 21+22+23+24+....+22010
A = (21+22+23) + (24+25+26) + .... + (22008+22009+22010)
A = 2(1+2+22) + 24(1+2+22) + ..... + 22008(1+2+22)
A = 2 . 7 + 24. 7 + ..... + 22008. 7
A = 7 . (2+24+....+22008)
Vì 7 chia hết cho 7
\(\Rightarrow\) 7 . ( 2+24+....+22008) chia hết cho 7
Hay A chia hết cho 7
Vậy A chia hết cho 7
A phải là 3 . (2 + 22 + ... + 22009) chia hết cho 3
a=2^1+2^2+2^3+2^4+.....+2^2010
=(2^1+2^2)+(2^3+2^4)+....+(2^2009+2^2010)
=2*(2+1)+2^3*(1+2)+.....+2^2009*(1+2)
=2*3+2^3*3+....+2^2009*3
=3*(2+2^3+...+2^2009) chia hết cho 3