Trả lời:
Ta có:M= \(3^{N+3}+3^{N+1}+2^{N+3}+2^{N+2}\)
= \(3^N.3^3+3^N.3^1+2^N.2^3+2^N.2^2\)
=\(3^N.27+3^N.3+2^N.8+2^N.4\)
=\(3^N.\left(27+3\right)+2^N.\left(8+4\right)\)
Hay :\(3^N.30+2^N.12\)
Vì:\(30⋮6\) và\(12⋮6\)
Nên : \(3^n.30+2^n.12⋮6\)
Vậy: \(3^{N+3}+3^{N+1}+2^{N+3}+2^{N+2}\)\(⋮\)