Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Chứng minh rằng đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số

\(y=f\left(x\right)=\dfrac{-x^2-2x+3}{x+2}\).

datcoder
27 tháng 9 lúc 0:02

Ta có: \(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}} =  - x + \frac{3}{{x + 2}}\).

Xét \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( { - x} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{x + 2}} = 0\).

Vậy đường thẳng \(y =  - x\) là đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}}\)