Lời giải:
Do $x,y,z>0$ nên:
$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$
Hoàn toàn tương tự ta có:
$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$
$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$
Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.