Đặt \(a=\dfrac{9+3\sqrt{17}}{4}\) và \(b=\dfrac{3+\sqrt{17}}{4}\), khi đó \(a=3b\) và \(a+1=2b^2=c=\dfrac{13+3\sqrt{17}}{4}\)
Áp dụng bất đẳng thức AM-GM ta thu được các bất đẳng thức sau:
\(x^2+b^2y^2\ge2xby\)
\(by^2+z^2\ge2byz\)
\(a\left(z^2+x^2\right)\ge2azx\)
Đến đây ta cộng vế theo vế các bất đẳng thức thu được để có:
\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\)
Từ đó ta thay các giá trị của \(xy+yz+3zx,b\) và \(c\) để được:
\(P=x^2+y^2+z^2\ge\dfrac{\sqrt{17}-3}{2}\)
Cuối cùng, với \(x=z=\dfrac{1}{\sqrt[4]{17}}\) và \(y=\sqrt{\dfrac{13\sqrt{17}-51}{34}}\) (thỏa mãn giả thiết) thì \(P=\dfrac{\sqrt{17}-3}{2}\) nên ta kết luận \(\dfrac{\sqrt{17}-3}{2}\) là GTNN của biểu thức \(P\)
Sao ông cứ tham thế nhỉ tự hỏi tự trả lời nữa cẩn thận bị cắt CTV