Ta có :\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}=\dfrac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\dfrac{x}{2}+\dfrac{\left(x+1\right)+\left(1-2x\right)}{2}=1\)Dấu "=" xảy ra khi :x+1=1-2x\(\Leftrightarrow x=0\)
Vậy giá trị lớn nhất của M là 1 khi x=0
Ta có :\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}=\dfrac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\dfrac{x}{2}+\dfrac{\left(x+1\right)+\left(1-2x\right)}{2}=1\)Dấu "=" xảy ra khi :x+1=1-2x\(\Leftrightarrow x=0\)
Vậy giá trị lớn nhất của M là 1 khi x=0
cho x,y,z là các số thực dương thỏa mãn : xy+yz+zx=2016
c/m : \(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\)
\(x\le\dfrac{1}{4}\) là nghiệm của phương trình nào trong các phương trình sau?
a. \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)
b. \(\sqrt{x^2-12x+36x^2}=5\)
Cho 3 số thực a,b,c thỏa mãn a + b + c \(\le\) 3. C/m rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Help ạ
bài 1 : cho biểu thức
P=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn biểu thức P
b) Tìm x để \(\dfrac{1}{p}\le-\dfrac{5}{2}\)
Bài 1) Tìm GTLN của các biểu thức sau ( sử dụng bất đẳng thức Côsi)
a) P= \(\sqrt{\left(x+2\right)\left(3-x\right)}\); với \(-2\le x\le3\)
b) P= \(\sqrt{\left(x+2\right)\left(5x-2\right)}\); với \(-2\le x\le\dfrac{5}{2}\)
c) P= \(\sqrt{\left(2x+1\right)\left(5-3x\right)}\); với \(-\dfrac{1}{2}\le x\le\dfrac{5}{3}\)
( CÁC BẠN GIÚP MÌNH VỚI, ĐANG CẦN GẤP
)
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
Cho các số thực dương x, y, z thỏa mãn : xyz=1.CMR:
\(\dfrac{1}{\left(\sqrt{xy}+\sqrt{x}+1\right)^2}+\dfrac{1}{\left(\sqrt{yz}+\sqrt{y}+1\right)^2}+\dfrac{1}{\left(\sqrt{xz}+\sqrt{z}+1\right)^2}\ge\dfrac{1}{3}\)
Giúp mk với , mk sắp thi r...
Bài 1: \(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a.Rút gọn P
b, Tìm MaxQ = \(\dfrac{2}{P}+\sqrt{x}\)
Bài 2:
\(P=\left(1-\dfrac{1-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)
a, Rút gọn P
b, Tìm x để P > 0
c, Max Q = P(x+1)
Bài 3:\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x để \(Q=\dfrac{2\sqrt{x}}{P}\) nhận giá trị nguyên
Bài 4: Rút gọn: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x+1}}\right)\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x