Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Vân

Cho tứ giác lồi ABCD. Lấy các cạnh AB, CD làm đáy, dựng ra ngoài hai tam giác đều ABE, CDF. Lấy các cạnh BC, DA làm đáy, dựng vào trong hai tam giác đều BCG, DAH (tam giác BCG và tứ giác ABCD nằm về cùng một phía của đường thẳng BC, tam giá DAH và tứ giác ABCD nằm về cùng một phía của đường thẳng DA). Chứng minh rằng tứ giác EGFH là một hình bình hành

Thiên An
22 tháng 3 2016 lúc 16:30

A B C D E F G H

Thiên An
22 tháng 3 2016 lúc 16:35

Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có

\(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)

suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)

                        \(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)

                        \(=\overrightarrow{AC}\)

Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)

Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)

Do đó tứ giác EGFH là hình bình hành


Các câu hỏi tương tự
Trần Phan Ngọc Hân
Xem chi tiết
Đặng Minh Quân
Xem chi tiết
Nguyễn Hồ Thúy Anh
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Đỗ Hạnh Quyên
Xem chi tiết
Guyo
Xem chi tiết
Binh Le Huu Thanh
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Nguyễn Thị Hồng Nhung
Xem chi tiết