Xét tứ giác BHCK có:
BH = CK (gt)
BH // CK (gt)
=> Tứ giác BHCK là hình bình hành ( dấu hiệu 3 )
Xét tứ giác BHCK có:
BH = CK (gt)
BH // CK (gt)
=> Tứ giác BHCK là hình bình hành ( dấu hiệu 3 )
Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Bài 4: Cho hình bình hành ABCD, hai đường chéo AC, BD cắt nhau tại O. Kẻ BH I AC tại H cắt DC tại N và kẻ DK 1 AC tại K cắt AB tại M. a) Chứng minh tứ giác BMDN là hình bình hành. b) Chứng minh tứ giác BKDH là hình bình hành. c) Chứng minh AC, BD, MN đồng quy.
cho tam giác abc nhọn,các đường cao BD,CE cắt nhau tại H.Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhai tại K
a) c/m AH vuông góc BC
b) c/m tứ giác BHCK là hình bình hành
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng :
a)Tứ giác AICK là hình bình hành.
b) AI // CK.
c) DM = MN = NB.
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho hình bình hành ABCD,hai đường chéo AC,BD cắt nhau tại O.Kẻ BH vuông góc AC tại H,cắt DC tại N và kẻ DK vuông góc AC tại K cắt AB tại M.CMR:
a,Tứ giác BMDN là hình bình hành ;
b,Tứ giác BKDH là hình bình hành;
c,AC,BD,MN đồng quy
Cho hình bình hành ABCD có AB > AD . qua A kẻ đg thg vuông BD tại E , cắt CD tại I . qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
1) Chứng minh : AE // CF và AE = CF
2) Tứ giác AECI là hình gì ? Vì sao ?
Cho tứ giác ABCD. Vẽ các hình bình hành ABID, ACJD. Chứng minh tứ giác BIJC là hình bình hành