\(\left\{{}\begin{matrix}AE=2EC\\AF=2FD\end{matrix}\right.\) \(\Rightarrow EF//CD\) (Talet đảo)
Ba mặt phẳng (MEF), (BCD), (ACD) cắt nhau theo 3 giao tuyến phân biệt là EF, CD, PQ
Mà \(EF//CD\Rightarrow EF//CD//PQ\)
\(\left\{{}\begin{matrix}AE=2EC\\AF=2FD\end{matrix}\right.\) \(\Rightarrow EF//CD\) (Talet đảo)
Ba mặt phẳng (MEF), (BCD), (ACD) cắt nhau theo 3 giao tuyến phân biệt là EF, CD, PQ
Mà \(EF//CD\Rightarrow EF//CD//PQ\)
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .