\(QB^2=RB^2+RQ^2=3^2+4^2=5^2 \)
=> QB =5
RE là đường phân giác nên:
\(\dfrac{BE}{EQ}=\dfrac{RB}{RQ}\)
\(\dfrac{BE}{EQ+BE}=\dfrac{RB}{RQ+RB}\)
\(\dfrac{BE}{5}=\dfrac{3}{4}\)
\(BE=\dfrac{5.3}{4}=3.75\)
QE=BQ-BE=5-3.75=1.25
RB⊥RQ
EF ⊥RQ
=>EF//RB
=>\(\dfrac{EF}{RB}=\dfrac{QE}{QB}\)
\(EF=\dfrac{RB.QE}{QB}=\dfrac{3.1,25}{5}=0.75\)
Diện tích tam giác RQE:
S=1/2.FE.QR=1/2.0,75.4=1,5cm2
\(\dfrac{QR}{FR}=\dfrac{QB}{EB}\)
\(FR=\dfrac{QR\cdot EB}{QB}=\dfrac{4\cdot3.75}{5}=3\)
Diện tích tam giác REB:
1/2*RF*RB=1/2*3*3=3cm2