Bài tập cuối chương 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:

a)\(\widehat {CBM} = \widehat {CAK}\)

b) Tam giác BHN cân.

c) BC là đường trung trực của HN.

datcoder
15 tháng 10 lúc 23:28

a) Xét tam giác ABC có đường cao AK, BM  nên \(\widehat {AKC} = \widehat {BMC} = 90^\circ .\)

Xét tam giác BMC vuông tại M có: \(\widehat {CBM} + \widehat {BCA} = 90^\circ \)

Xét tam giác AKC vuông tại K có: \(\widehat {KAC} + \widehat {BCA} = 90^\circ \)

Nên \(\widehat {CBM} = \widehat {KAC}.\)

b) Xét tứ giác HKCM có:

\(\begin{array}{l}\widehat {HKC} + \widehat {HMC} + \widehat {KHM} + \widehat {KCM} = 360^\circ \\\widehat {KHM} + \widehat {KCM} = 360^\circ  - \widehat {HKC} - \widehat {HMC}\\\widehat {KHM} + \widehat {KCM} = 360^\circ  - 90^\circ  - 90^\circ \\\widehat {KHM} + \widehat {KCM} = 180^\circ \end{array}\)

Mà \(\widehat {KHM} + \widehat {BHN} = 180^\circ \), suy ra \(\widehat {KCM} = \widehat {BHN}\) (1)

Ta lại có: \(\widehat {KCM} = \widehat {BNA}\)(2 góc nội tiếp cùng chắn cung AB của (O)) (2)

Từ (1) và (2) suy ra \(\widehat {BHN} = {\widehat {BNA}^{}}( = \widehat {KCM}).\)

Vậy tam giác BHN cân tại B.

c) Có: \(\widehat {BNC} = {\widehat {KAC}^{}}\)(2 góc nội tiếp cùng chắn cung NC của (O)).

Mà \(\widehat {CBM} = \widehat {KAC}\) (câu a)

Suy ra \(\widehat {CBM} = \widehat {BNC}\) hay BC là tia phân giác của góc NBH, do đó BK là đường phân giác của tam giác BNH.

Xét tam giác cân BNH có BK là đường phân giác nên BK đồng thời là đường trung trực hay BC là đường trung trục cua HN.

Vậy BC là đường trung trực của HN.