Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh các tứ giác BDHF, BCEF nội tiếp
b) Chứng minh FC là tia phân giác của góc EFD
c) Hai đường thẳng EF và BC cắt nhau tại M . Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K . Chứng minh tam giác HIK cân
Cho ΔABC có 3 góc nhọn nội tiếp (O ;R) các đường cao AD,BE cắt nhau tại H , kéo dài BE cắt (O) tại F
a, cm : tg CDHE nội tiếp
b, Gọi M là trung điểm của AB
cm : ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE
c, Cho BC cố định và BC = R \(\sqrt{3}\)
Xác định vị trí của A trên (O) để DH.DA đạt GTLN
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh AMACAMAC=AFECAFEC và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh \(\dfrac{AM}{AC}\)=\(\dfrac{AF}{EC}\) và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KE.KF=KB.KC
c) Gọi M là giao điểm của AK và (O). Chứng minh góc KAC= góc KFM
d) Chứng minh M;H;I thẳng hàng