Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng :
\(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)
Cho hình bình hành ABCD. Gọi E là điểm thỏa mãn 4 \(\overrightarrow{DE}\) = \(\overrightarrow{DC}\) và G là trọng tâm tam giác ABE. Đường thẳng AG cắt BC tại F. Biểu diễn \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AD}\) và tính tỉ số \(\dfrac{BF}{BC}\)
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm
Cho tam giác. Gọi I là trung điểm của BC, K là trung điểm của BI. Chứng minh rằng :
a) \(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\)
b) \(\overrightarrow{AK}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vectơ \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M. Hãy xác định điểm D sao cho \(\overrightarrow{CD}=\overrightarrow{v}\) ?
Chứng minh rằng nếu G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C' thì \(3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\) ?
cho tứ giác ABCD . gọi M,N lần lượt là trung điểm AB và CD .cmr:
a) 2\(\overrightarrow{mn}\)=\(\overrightarrow{AC}\)+\(\overrightarrow{BD}\)=\(\overrightarrow{BC}\)+\(\overrightarrow{AD}\)
b)Lấy H trên AD , K trên BC sao cho \(\dfrac{HA}{HD}\)=\(\dfrac{KB}{KC}\). HK cắt MN tại I .cmr I là trung điểm HK
Cho A(1;3); B(2;-4); C(-3;5); D(-4;-5)
a) Tìm M sao cho \(2\overrightarrow{AM}+3\overrightarrow{AB}-4\overrightarrow{AC}=\overrightarrow{0}\)
b) Tìm D sao cho tứ giác ADIG là hình bình hành với G trọng tâm tam giác ABC, I trung điểm AC.
c) Tìm giao điểm của hai đoạn thẳng AB và CD
Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.
a) Với điểm M tùy ý , hãy chứng minh :
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
b) Chứng minh rằng :
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)