a) Vì tam giác ABC đều nên ba đường trung tuyến AM, BN, CP đồng thời là ba đường phân giác.
b) Do O là giao của 3 đường phân giác trong tam giác ABC nên O cách đều 3 cạnh của tam giác, do đó OM = ON = OP.
Vậy đường tròn (O) là đường tròn nội tiếp tam giác ABC.
c) Xét tam giác ABC đều có đường trung tuyến AM nên \(BM = \frac{{BC}}{2} = \frac{a}{2}\) và AM đồng thời là đường cao, do đó \(\widehat {AMB} = 90^\circ .\)
Xét tam giác AMB vuông tại M có:
\(AM = \sqrt {A{B^2} - B{M^2}} \) (Pytago).
Nên \(AM = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt 3 a}}{2}.\)
Mà \(OM = \frac{1}{3}AM\)(do AM là đường trung tuyến trong tam giác ABC).
Suy ra \(OM = \frac{1}{3}.\frac{{\sqrt 3 a}}{2} = \frac{{\sqrt 3 a}}{6}.\)