cho tam giác abc vuông tại a. i là trung điểm của cạnh bc. qua i kẻ đường thẳng song song với ab cắt ac tại n. kẻ đường thẳng song song với ac cắt ab tại m.
a) c/m tứ giác AMIN là hình chữ nhật
b)tam giác abc có them điều kiện gì thì tứ giác AMIN là hình vuông?
c)điểm E đỗi xứng với I qua M điểm F đối xứng với I qua N. c/m ba điểm E,A,F thẳng hàng.a

a) Tứ giác AMIN có:
IM // AN (IM // AC, N \(\in\) AC)
IN // AM (IN // AB, M \(\in\) AB)
\(\Rightarrow\) AMIN là hình bình hành
mà \(\widehat{A}=90^o\)
\(\Rightarrow\) AMIN là hình chữ nhật.
b) Kẻ đoạn thẳng AI.
Để AMIN là hình vuông thì \(\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow\) AI là tia phân giác của \(\widehat{A}\).
Lại có: AI là đường trung tuyến của \(\Delta ABC\).
\(\Rightarrow\) \(\Delta ABC\) cân tại A.
Vậy để tứ giác AMIN là hình vuông thì \(\Delta ABC\) cần thêm điều kiện cân tại A.
c) Kẻ đoạn thẳng MN. Gọi giao điểm của MN và AI là K.
\(\Delta AIF\) có:
KA = KI (AMIN là hình chữ nhật)
NI = NF (gt)
\(\Rightarrow\) KN là đường trung bình của \(\Delta AIF\).
\(\Rightarrow\) KN // AF (1)
Tương tự với \(\Delta AIE\), ta có: KM là đường trung bình của \(\Delta AIE\)
\(\Rightarrow\) KM // AE (2)
Lại có: M, K, N thẳng hàng (K là trung điểm của MN) (3)
Từ (1), (2) và (3) \(\Rightarrow\) ba điểm E, A, F thẳng hàng (đpcm).