Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nga Phạm

cho tam giac ABC nhon co cac duong cao BD, CE cat nhau tai H.

a. cm tam giac ADB dong dang tam giac AEC

b. cm AE.AB=AD.AC

c. biet goc A = 60 độ, S ABC =160cm2. tinh dien tich tam giac AED.

d. cm HB.BD+CH.CE=BC2

Nhã Doanh
19 tháng 5 2018 lúc 13:20

A B C D E H M

a.

Xét ▲ ADB và ▲AEC có:

góc D = E = 90o

góc A chung

Do đó: ▲ADB ~ ▲AEC (g.g)

b.

Ta có: ▲ADB~▲AEC

=> \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AE.AB\)

c.

Xét ▲ABC và ▲ADE có:

góc A chung

\(\dfrac{AB}{AD}=\dfrac{AE}{AC}\) ( ▲ABD~▲AEC)

Do đó: △ABC ~ △ADE ( c.g.c)

Ta có góc A = 60o

=> \(\dfrac{AD}{AB}=\dfrac{AC}{AE}=\dfrac{1}{2}\)

Tỉ số diện tích là:

\(\dfrac{S_{\Delta ADE}}{S_{\Delta ABC}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> S▲ADE = \(\dfrac{1}{4}.120=30\left(cm^2\right)\)

d.

Vẽ AH ⊥ BC tại M

Xét ▲BCD và ▲BHM có:

góc B chung

góc D = M = 90o

Do đó: ▲BCD~BHM (g.g)

=> \(\dfrac{BC}{BH}=\dfrac{BD}{BM}\Rightarrow BC.BM=BH.BD\) (1)

Xét ▲CMH và ▲CEB có:

góc C chung

góc M = E = 90o

Do đó: ▲CMH~▲CEB ( g.g)

=> \(\dfrac{MH}{EB}=\dfrac{CH}{CB}\Rightarrow MH.CB=EB.CH\) (2)

Từ (1) và (2) cộng vế theo vế ta được:

\(BC.BM+CH.CB=BH.BD+EB.CH\)

\(\Rightarrow BC\left(BM+CM\right)=BH.BD+EB.CH\)

\(\Rightarrow BC^2=BH.BD+EB.CH\)

=> ĐPCM


Các câu hỏi tương tự
Cao Thu Anh
Xem chi tiết
Phạm Thùy Nguyên Phương
Xem chi tiết
Nga Phạm
Xem chi tiết
Ánh Đặng Minh
Xem chi tiết
Trần Thị Thanh Thuý
Xem chi tiết
Lê Lưu Hồng Phúc
Xem chi tiết
Thien than
Xem chi tiết
bí ẩn
Xem chi tiết
phamquocdat
Xem chi tiết