\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O), có các đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tứ giác ADHE
b) Chứng minh: tứ giác BEDC nội tiếp.
c) Chứng minh AH vuông góc BC
cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) (AB < AC). Đường cao BE kéo dài cắt đường tròn tại K. Kẻ KD vuông góc với BC tại D. Qua E kẻ đường thẳng vuông góc với OA cắt AB tại H. Tia DE cắt AB tại I.
a, Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b, Chứng minh KB là tia phân giác của góc AKD
c, Chứng minh tứ giác CKIH là hình thanh
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho △ ABC (AB<AC) có 3 góc nhọn nội tiếp (O;R) . H là giao điểm của 3 đường cao AD,BE,CF của △ ABC
a)c/m AEHF nội tiếp; AEDB là các tứ giác nội tiếp
b) vẽ đường kính AK của (O)
C/m AB.AC=AK.AD
c) Chứng minh : OC vuông DE
Trên ( O;R), vẽ đường kính AB. lấy C thuộc (O) sao cho AC=R và lấy điểm D bất kì trên cung nhỏ BC (D ko trùng với B,C ). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua E vuông góc với đưởng thẳng AB tại H. C/m tứ giác AHEC là tứ giác nội tiếp