Xét `\triangle AMB` và `\triangle AMC` có:
`{:(AB=AC),(MB=MC),(AM\text{ là cạnh chung}):}}=>`
`=>\triangle AMB =\triangle AMC` (c-c-)
`=>\hat{BAM}=\hat{CAM}`
`=>AM` là tia phân giác của `\hat{BAC}`
Xét `\triangle AMB` và `\triangle AMC` có:
`{:(AB=AC),(MB=MC),(AM\text{ là cạnh chung}):}}=>`
`=>\triangle AMB =\triangle AMC` (c-c-)
`=>\hat{BAM}=\hat{CAM}`
`=>AM` là tia phân giác của `\hat{BAC}`
Cho tam giác ABC có AB bằng AC,trên cạnh AB lấy điểm M,trên cạnh AC lấy điểm N sao cho AM bằng AN.Gọi H là trung điểm của BC.
a/ Chứng minh:Góc ABH bằng góc ACH
b/ Gọi E là giao điểm của AH và NM.Cứng minh:Tam giác AME bằng Tam giác ANE
c/ Chứng minh:MN song song BC
Cho tam giác ABC cân tại A. Gọi K là trung điểm của BC. Trên tia đối của tia KA, lấy điểm H sao cho KH=KA a) chứng minh :AC=HB b) Gọi M, N lần lượt là trung điểm của AC, BH. Chứng minh : 3 điểm M, K, N thẳng hàng. Giúp mình với
Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A.
Chứng minh rằng tam giác ABC là tam giác cân ?
Cho góc nhọn xAy, trên tia Ax lấy điểm B trên tia Ay lấy điểm C sao cho AB = AC. Cho I là trung điểm của BC. Chứng minh :
a) Tam giác AIB = tam giác AIC
b) AI là đường trung trực của BC
GIÚP MÌNH VỚI Ạ MÌNH CẦN GẤP !
Cho △ ABC vuông tại a có AB = 6cm, AC = 8cm, vẽ trung tuyến AM (M ∈ BC). Từ M kẻ MH ⊥ AC (H ∈ AC), trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a) Tính cạnh BC.
b) Chứng minh △ MHC = MKB.
c) chứng minh MH là tia phân giác của góc AMC.
d) Gọi G là giao điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng.
cho tam giác ABC, A = 60 độ B > A. vẽ tam giác đều MBC sao cho M và A thuộc cùng một nửa mặt phẳng bờ BC trên cạnh AC lấy điểm N sao cho AN = AB chứng minh rằng
a, AMB=NBC
b, tia AC là tia phân giác của góc BAM
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.
cho tam giác abc cân tại b. gọi d là trung điểm của ac chứng minh BD là tia phân giác của góc B
Tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng :
a) \(MH=MK\)
b) \(\widehat{B}=\widehat{C}\)